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Introduction

Clouds are one of the most important moderators of the
earth radiation budget and one of the least understood.
The effect that clouds have on the reflection and
absorption of solar and terrestrial radiation is strongly
influenced by their shape, size, and composition.
Physically accurate parameterization of clouds is necessary
for any general circulation model (GCM) to yield
meaningful results.  The work presented here is part of a
larger project that is aimed at producing realistic
three-dimensional (3D) volume renderings of cloud scenes
based on measured data from real cloud scenes.  These
renderings will provide the important shape information
for parameterizing GCMs.  The specific goal of the current
study is to develop an algorithm that automatically classi-
fies (by cloud type) the clouds observed in the scene.  This
information will assist the volume rendering program in
determining the shape of the cloud.

Much work has been done on cloud classification using
multispectral satellite images (e.g., Ebert 1992; Garand The objective of this work is to automatically classify the
1986; Inoue 1987; Lamei et al. 1993; Lee et al. 1990; different types of clouds observed in WSI data.  To do this
Smotroff 1993; Yool and Brandley 1992).  Most of these we use binary decision trees (Breiman et al. 1984) to clas-
references use some kind of texture measure to distinguish sify each pixel in the cloud scene as either clear sky or one
the different cloud types and some also use topological of four cloud types:  altocumulus, cirrus, cumulus, or
features (such as cloud/sky connectivity or total number of stratus.  Binary decision tree algorithms use a set of
clouds).  A wide variety of classification methods has been training data, for which the cloud class is known, and
used, including neural networks, various types of generate a hierarchy of thresholds based on a series of
clustering, and thresholding.  The work presented here measured features.  For each point in the training sample,
uses binary decision trees to distinguish the different cloud
types based on cloud feature vectors.

The images used in this study were obtained from two
whole-sky imagers (WSIs) located at White Sands,
New Mexico, during the months of July, September, and
October 1989 and May 1992.  These ground-based imagers
are spaced approximately 5 km apart and, together, provide
a stereo view of the sky.  The data acquired from these
imaging systems can be used in a wide variety of applica-
tions including cloud base height determination and
cloud-type occurrence statistics.  These applications can be
augmented by automatic determination of the type of cloud
present in a cloud scene.

WSI data present some unique challenges to cloud classifi-
cation for several reasons.  First, the image is not a flat
representation of the cloud scene.  Instead, equal distances
in the image are equal angles in the scene.  Therefore,
while the angular resolution of the data  is
constant, the length resolution decreases from the center to
the edge of the image.  Also, due to the perspective of
ground observations, the center of the image views the
bottom of the clouds but the image edge views either the
bottom (for clouds of large spatial extent) or the side (for
modular or broken clouds).  Another challenging aspect of
the WSI data is the relatively limited field of view.
Compared with satellite data, the WSI cloud scene is a
very local one.  Many of the clouds extend beyond the
edge of the image and, therefore, very few clouds are seen
in their entirety.  This precludes such features as perimeter
measures, shape measures, etc., from being used in the
classification.

Classification Method

n different features are measured.  These measurements
are placed in an n-dimensional space, and successive splits
(which are equivalent to thresholds on individual feature
values) are used to separate the points into different
regions or nodes.  At every level, each region is
individually analyzed to find the optimal split (i.e., the
split which most reduces some measure of the node im-
purity).  In the resulting tree structure, each node has an
associated misclassification rate estimate which can be
used to evaluate the relative performance of the tree and
also the confidence of the final classification.

The features described here are all measured for each pixel
in the WSI data.  Most of the features are computed as an
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average over a neighborhood around each pixel.  The pyramid-type structure following Burt (1984).  In this
resulting binary decision tree, then, actually classifies pyramid structure, each successive level represents
individual pixels as belonging to one of four cloud classes low-pass filtered copies of the original image with an
or the clear sky class.  This result can be generalized to additional decrease in sampling density and a
give the most likely class to which each cloud or cloud corresponding decrease in physical size (each level being
image belongs. one-half as big as the preceding level).  The same sized

The features used in this study can be grouped into three the texture energy at each level with the result that each
categories:  texture measures, position information, and level contains information collected over a larger extent
pixel brightness.  One of the texture measures is the than the previous level.  After the texture measures are
standard deviation of the image brightness computed over computed on the reduced images, they are expanded by
a neighborhood around each pixel.  The remaining texture interpolation (Burt 1984) to the original size so that
measures are computed using the LAWS kernels (Laws information from different spatial resolution levels can be
1980).  These 5 x 5 matrix kernels are used to quantify the used simultaneously at each point.  Four levels were used
amount of 25 different types and orientations of texture in for this work with the original image being level 0, with a
the cloud scenes and are derived by taking the outer diameter of about 450 pixels, and level 3 being eight times
product of combinations of two of the following five smaller in size than level 0, with a diameter of about 56
vectors:  L5 = [ 1 4 6 4 1], E5 = [-1 -2 0 2 1], S5 = [-1 0 2 pixels.
0 -1], W5 = [-1 2 0 -2 1], and R5 = [1 -4 6 -4 1].  The letter
names for the vectors refer to the type of texture that each Of the features outlined above, there is no way to
vector is sensitive to, namely Level, Edge, Spot, Wave,
and Ripple, respectively.  For example, the kernel L5E5 is
the outer product of the vectors L5 and E5, and E5L5 is its
transpose, the outer product of the vectors E5 and L5.

The method used to obtain a measure of the texture energy
in the neighborhood of each pixel closely follows that
found in Laws (1980).  First, each cloud scene is
convolved with one of the 5 x 5 texture kernels.  Next, the
absolute value of the result is averaged over a
neighborhood around each pixel to give a measure of the
texture energy at each point.  The nature of the WSI
camera systems gives rise to two important distance
measures in the acquired images.  First is the distance
from the center of the image, which is equivalent to the
zenith angle.  Since the linear (not angular) resolution of
the image is degraded as the zenith angle increases, the
texture of the clouds will also change with increasing
zenith angle.  Second is the difference between the sun
angle and viewing angle, which we approximate as the
distance from the center of the occultor.  These two
distance measures are also included as features used in the
classification.  Finally, the pixel brightness of the acquired
image is also included as a feature.

The texture measures, as outlined above, only use informa-
tion from a small neighborhood relative to the sizes of the
clouds.  In order to include the available large-scale in-
formation in the classification, the resolution and sample
density of the data are recursively reduced to form a 

kernels and neighborhoods (in pixels) are used to compute

determine a priori which ones are more important to the
final classification and which ones can be left out without
introducing errors.  Furthermore, it would be very
computationally expensive to grow the decision tree using
all the features and let the algorithm choose the best ones.
Therefore, an iterative process was used to estimate which
of the above features allowed the optimal tree to be grown.
First, the training data were classified using each feature
independently and the resulting resubstitution error rates
compared (the resubstitution error rate is the error incurred
when the data that were used to grow the decision tree are
classified by the decision tree).  This error rate can be
non-zero because in some instances the training data do
not warrant the amount of splitting required to produce a
zero error rate.  The five features that gave the lowest error
rates were then passed on to the next step.  The training
data were classified using one of the best five features
from the previous step and all the other features, taking
one at a time so that each tree was grown using two
features.  The five trees with the lowest error rates were
then passed on to step three.  To each pair of features from
step two, all other features were added one at a time and a
tree with three features grown.  This procedure was re-
peated until the nine most important features were dis-
covered.  This is actually an estimate of the most
important features.  To determine the absolute best
features, an exhaustive search would have to be made
where every combination of nine features would be used to
classify the training data and the resubstitution error rates
compared for all trees.  This is an enormous task for even
a small number of features.
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Table 1.  The composition and size of the training data and test data sets.

Cloud Number of Number of Number of Number of
Class Training Images Training Points Test Images Test Points

Altocumulus 3 80,197 1 32,264

Cirrus 5 153,760 1 52,347

Cumulus 5 114,955 2 75,235

Stratus 5 187,394 2 152,595

Clear sky 16 469,152 4 125,606

Results

Table 1 lists the number of images and pixels for each
cloud type used in the training data set.  The method
outlined above was used to determine the nine most
important features for classifying the training data.  The
resubstitution error rate of the resulting decision tree was
6.4%.  The nine features used for the classification, in
order from most to least important, are

1.  the LAWS feature L5L5 for level 2

2.  the distance from the center of the occultor

3.  the distance from the center of the image 

4.  the local standard deviation at level 0

5.  the local standard deviation at level 1

6.  the pixel brightness 

7.  the LAWS feature L5E5 for level 3 

8.  the LAWS feature L5R5 for level 3 

9.  the LAWS feature E5L5 for level 3 

Several things should be noted from this list.  First, the
four LAWS texture measures included are for levels 2
and 3.  This implies that these important textures are
more large-scale textures, probably inter-cloud rather
than intra-cloud.  Also note that the transpose pair L5E5
and E5L5 are included, indicating that this particular
texture occurs with more than one orientation.  Second,
the local standard deviation features are for levels 0 and
1, indicating that intra-cloud texture is also important for

the classification.  Finally, both distance measures are
very important features, indicating the strong
dependence of cloud appearance on position within the
image.

The resubstitution error rate is a measure of how well
the decision tree classifies the training data.  But a more
strict performance measure of the decision tree is the
error rate resulting from classifying data not included in
the training set.  (Table 1 lists the number of images and
pixels for each cloud type used in this test data set.)
This error rate is the misclassification error rate, which
is defined as the percentage of class I points that are
misclassified as class j, with j  I.  The
misclassification error rate would be zero for a perfect
classification.  It is also instructive to generate a
confusion matrix  which gives the fraction of class I
points that are classified as class j.  This matrix would
be diagonal for a perfect classification and shows which
classes are confused most often.

Since the classification is performed on the individual
pixels in each test image, the output from the decision
tree algorithm is a very noisy image.  Several methods
can be used to clean up the raw output and produce a
more usable and informative result.  For the present, a
k-nearest neighbor filter is used to remove the noise in
the raw classified images.  The class of each point is
changed to the most probable class in a 31 x 31
neighborhood around that point.  This has the effect of
absorbing small islands of one class into the larger
regions of the surrounding class.  Visual inspection of
both the raw classified and the filtered images shows
that the basic trends are maintained but the noise is
greatly reduced.  Figure 1 shows one example of the
classification result with Part a showing the cloud scene,
Part b showing the classification result before filtering,
and Part c showing the result of filtering with the 
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Figure 1.  An example of the classification results for one of the test data images.  Part a shows the WSI
cloud scene.  Part b shows the classification result before filtering.  Part c shows the classification result
after processing with the k-nearest neighbor filter.  In Parts b and c, the five gray levels, starting with
black and increasing to light gray, correspond to pixels classified as clear sky, cirrus cloud, stratus cloud,
altocumulus cloud, and cumulus cloud, respectively.

k-nearest neighbor filter.  In Parts b and c, black denotes represent the training data well.  The misclassification
clear sky pixels, dark gray denotes cirrus cloud pixels, error rate is higher   (39%)   for  several  reasons.   First,
medium dark gray denotes stratus cloud pixels, medium there  is   the possibility that the training data are not
light gray denotes altocumulus cloud pixels, and light representative of the test data.  This difficulty can be
gray denotes cumulus cloud pixels.  Table 2 gives the overcome by including more samples in the training
confusion matrix for the filtered results which has an data, thus supplying the tree growing algorithm with
overall misclassification rate of 39%. information about a larger range of clouds in each cloud

Conclusions/Discussion

The decision tree grown using the training data has a
very low resubstitution error rate (6.4%), indicating that
the features used  to  perform  the  classification  

class.  With the immense variability that exists in
clouds, this is almost certainly a contributing factor in
this work and also one of the hardest to overcome.
Second, when the test data classification results are
analyzed, several common errors that contribute to
misclassified  pixels  are  easily  recognized.   The  two

Table 2.  Confusion matrix for the test data after filtering with the
k-nearest neighbor filter.

True Class altocumulus cirrus cumulus s clear sky
(%) (%) (%) stratu (%)

(%)

Altocumulus 43 19 12 10 17

Cirrus 7 35 21 24 12

Cumulus 8 14 54 14 11

Stratus 4 12 12 46 26

Clear sky 1 0 1 0 98

Overall misclassification rate = 39%
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 most obvious are problems in correctly determining the Laboratory, White Sands Missile Range, who provided
class of pixels near the edge of the image and near the for the siting of the WSIs at White Sands, New Mexico.
occultor.  This is not an unexpected result since the reso-
lution is the poorest near the edge of the image, which
greatly reduces the sensitivity of the texture measures,
and the brightness is generally the highest near the
occultor, which can tend to make different cloud types
appear similar.  Another factor contributing to the high
misclassification error rate is related to the use of the
k-nearest neighbor filter.  Passing this filter over the
classified images does decrease the misclassification
error rate (for the test data, the error rate was reduced
from 45% to 39%), but it does so without any knowledge
specific to the geometry or physics of cloud fields.
Another method that does use some basic rules about
typical cloud sizes, cloud occurrence statistics etc.,
would probably give a more dramatic reduction in error
rate.  This assertion is motivated by the fact that, in the
test data classification results, the correct cloud class is
present somewhere within the region occupied by almost
every cloud.  If this correct class could be identified by
some rule-based decision algorithm, then another
filtering operation with the correct cloud class
preferentially weighted could be used with an associated
decrease in the error rate.

This study has succeeded in developing an algorithm
that can classify pixels in WSI data according to cloud
type through the use of binary decision trees.  The clas-
sification is fairly accurate when tested on data other
than those used for training, and analysis of the results
has suggested several ways of improving the overall
accuracy of the classification.  Future work on this
project will be focused on two main areas.  First, we will
assemble a training data set that is more representative
of the cloud scenes collected by the WSIs and thereby
improve the accuracy of the initial classification step.
Second, we will develop a more physically based
process of determining the actual cloud class from the
output of the decision tree algorithm and thereby
improve the accuracy of the second classification step.
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