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One of the main goals of the Atmospheric Radiation
Measurement (ARM) Program is to better understand
cloud-radiation interaction in order to improve our climate
forecasting skills. We use data on the distribution of
atmospheric liquid water from a variety of sources, including
ARM’s routine ground-based retrievals, and a number of
carefully selected statistical properties to obtain simple
and robust yet dynamically relevant characterizations of
cloudiness. These characterizations are a prerequisite for
developing more realistic stochastic cloud models which
can be used to investigate numerically radiative transfer
issues as in Cahalan et al. (1994a, 1994b), leading, in
particular, to better GCM radiation schemes.

Consider a signal φ(x) where x represents time or a spatial
coordinate. We are interested in the statistical properties
of φ(x) that depend parametrically on scale r. In the
following, we assume that φ(x) is statistically “scale-
invariant,” meaning that its statistics follow power-laws in
r  over some large range of scales. Such power-law behav-
ior is expected from geophysical systems governed by
strongly nonlinear dynamics over a large range of scales.
Scale-invariant statistics are thus physically based and
have proved invaluable in many branches of nonlinear
science.

To discern these power-laws, we derive non-negative
random quantities ξ (r;x) from φ(x) which are dependent on
scale r (examples to follow). In a multiscaling approach, we
then seek A(q) in

ξφ r ; x( )q  ≡  ξφ r( )q  ∝  r A q( )

where 〈·〉 denotes an ensemble average and where the
identity applies only if ξφ(·) is stationary (i.e., statistically

invariant under translation). If the proportionality constants
in Equation (1) are only weakly dependent on the real
parameter q, then the family of exponents A(q) will account
for most of the variability of φ(x), as captured by ξφ(·), since
r spans a wide range of values. In the following, we denote
this range [η,R].

In Davis et al. (1994b), we graphically explain step-by-step
the two most popular “multifractal” statistics applicable to
a non-stationary signal, namely: “structure functions” and
“singular measures,” both of which can be recast in a
unified framework based on continuous wavelet transforms
(Davis et al. 1994a). Here, we illustrate these analysis
techniques using liquid water path (LWP) data retrieved
from passive microwave radiometry at the Southern Great
Plains ARM site.

Figure 1 shows a typical sample, one day long with a
measurement approximately every 20 seconds. The
ensemble-average is taken over 41 days free of suspicious
behavior (e.g., missing data, unphysically large values,
many negative values, rain and dew).

The ensemble-average energy spectrum

E(k) ∝  k -β

for the LWP database is inset into Figure 1 and exhibits
nearly a ß = 5/3 power-law in wavenumber k ≈ 1/r. This
means that, over the corresponding range of scales, the
process is non-stationary per se (ß > 1) but has stationary
increments (ß < 3); see Marshak et al. (1994) and Davis et al.
(1994a) for theoretical arguments and Davis et al. (1994b),
Marshak et al. (accepted), and Cahalan and Snider (1989)
for empirical examples. This in turn guides our choices for
ξφ(·).

(2)
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Structure Functions
We consider increments across scale r:

ξ φ r ;x( )  =  ∆ φr ;x( )  =  φ x + r( ) - φ x( ) .

Figure 2a is a log-log plot of 〈|∆φ(r)|q〉 versus r ; the portion
with linear behavior for all values of q determines the
scaling range [η,R], spanning almost three decades. In
this range of scales, we fit straight lines to the points for
multiple q values, obtaining the exponents

A q( )  =  ζ q( )  =  qH q( )  ≥  0,  q ≥  0.

Scaling stationary cases lead to scale independent
increments hence ζ(q) ≡ 0; for example, we notice in
Figure 2a a transition from non-stationary to stationary
behavior for scales r > R which is known as the “integral”
scale. The function ζ(q) plotted in Figure 3 is concave and
smooth with ζ(0) = 0. We interpret the exponent functions
ζ(q) and H(q) as equivalent ways of characterizing the non-
stationarity of φ(x). Since ζ(1) = H(1) = H1 is > 0, we observe
a tendency towards continuity (i.e., |∆φ(r ;x)|6 0 as r 6 0).
However, the LWP data do not appear to be differentiable
since |∆ (r ;x)|/r 6∞ as r 60. It is convenient to choose H1,
ranging from 0 to 1, as a simple measure of non-stationarity.

Singular Measures
We now compute

ε η ; x( )  =  ∆φ η;x( )

where η denotes the lower end of the scaling regime for the
structure functions or the energy spectrum. We then define

ξφ r ; x( )  =  ε r; x( ) , r ≥ η

(3)

(4)

Figure 1. Column liquid water at the ARM Southern Great
Plains site. A day-long sample retrieved from passive
microwave radiometry, this and 40 other such files were
used to obtain the statistics presented in Figures 2 and 3.
The inset shows spectral energy E(k) versus kL/2, where
L=1 day, in log-log axes.

Figure 2. Scale-invariance of the statistical properties of
LWP in the ARM database. (a) log2 〈|∆ φ(r)|q 〉 versus
log2(r/l) where l = 20 s for 1≤ q ≤ 5; the scaling regime is
indicated between η ≈ 2l and R ≈ 210l. It is noteworthy that
the slope ζ(2) ≈ 0.70 accurately verifies the Wiener-
Khintchine relation for scale-invariant non-stationary
processes: ß = ζ(2)+1. (b) Same as in panel (a) but for log2
〈ε(r)q〉 versus log2(r/l) for η ≤ r ≤ L, no need to stop at R in
this case.

(5a)
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as the spatial averages of |∆ φ(η;x)| over intervals [x,x+r],
up to r = R at least. Figure 2b is a log-log plot of 〈ε(r)q〉
versus r showing scaling for a range exceeding that of
Figure 2a. Fitting straight lines, as before, gives the
exponents

−A q( )  =  K q( )  =  q -1( ) C q( ) , q ≥ 0

which is convex and smooth with K(0) = K(1) = 0 (Figure 3).
The non-increasing function D(q) = 1-C(q) has been used
to quantify the underlying intermittency of φ(x) in turbulence
studies and the strangeness of the attractor in chaos
theory. The exponent C(1) = K ’(1) = C1 (to be discussed
in geometrical terms further on) ranges from 0 to 1 and
provides a simple measure of intermittency.

In Davis et al. (1993 and 1994a), we discuss the possibility
of K(q) ↔ ξ(q) connections which have received
considerable attention in the turbulence literature. As one
aspect of such connections, we proposed the “mean
multifractal plane” as a simple diagnostic device applicable
to the intercomparison of geophysical datasets and their
comparison with model calculations (Davis et al. 1993,
1994a, 1994b; also see footnote [a]). In this plane, we take
H1 as the horizontal axis, measuring non-stationarity; and
C1 as the vertical axis, measuring intermittency which is
manifest in the small scale absolute gradient field ε(η;x).
Alternatively, we could consider the fractal dimension

Dg = 2 - H1 that describes the roughness of the graph of the
data; and D(1) = 1 - C1, known as the “information”
dimension, which is the fractal dimension of the sparse set
where we find the events that dominate the mean 〈ε(η;x)〉.

Returning to cloud structure issues, we have applied the
whole spectral/multifractal analysis procedure to marine
stratocumulus liquid water content (LWC) fields sampled
during the First ISCCP(a) Regional Experiment (FIRE’87)
(Davis et al.(a)) and the Atlantic Stratocumulus Transition
EXperiment (ASTEX) (Davis et al. 1994b). In both cases,
scale-invariance over three decades of spatial scale was
uncovered. Figure 4 shows the (H1,C1) plane with points
representing these two LWC analyses and the above ARM
microwave LWP; for reference, the locus of turbulent
velocity is indicated, as well as a plethora of models. We
can draw the following conclusions:

• The proximity of the multifractal parameters for the two
LWC points indicates that the dynamics that determine
the internal structure of marine StCu depend little on the
local climatology.

• Very similar parameters are found for daily LWP data
retrieved at the Oklahoma ARM site and for LWC
measured in situ over oceans; as expected, the
integrated quantity, LWP, varies somewhat more
smoothly: H1(LWP) > H1(LWC).

• The LWC, LWP and turbulence data points are
incompatible with the simplest scale-invariant stochastic
models. Additive processes lack intermittency, and
multiplicative cascades are too stationary. We need a
new class of model for cloud liquid water, along the lines
traced out in Marshak et al. (1994) and Cahalan et al.
(1994a).

• Dynamical cloud models may not have the same range
of scales we can access through direct measurement,
but they must nevertheless realistically reproduce the
structures we observe in the data at the scales they do
resolve. More precisely, they should yield similar values
for 〈|∆φ(r)|q〉 and 〈ε(r)q〉, and, we hope, even for the
exponents such as (H1,C1).

Figure 3. The ζ(q) and K(q) Functions for LWP in the ARM
database. The curvature of these two functions establishes
the multifractality of the horizontal distribution of liquid
water in the atmosphere. The mean exponents H1 = H(1)
and C1 = K’(1) are highlighted and carried into Figure 4.

(6)

(a) Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan. The Scale-
Invariant Structure of Marine Stratocumulus Deduced From Observed
Liquid Water Distributions, 2 - Multifractal Properties and Model
Validation. Submitted to J. Atmos. Sci.
(b) International Satellite Cloud Climatology Project.
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Figure 4. The “mean multifractal plane.” Notice the natural
bounds (0 and 1) for the two fundamental exponents; in
particular, C1 should be less than the dimensionality of the
signal, in this case unity, otherwise the ε-field becomes
“degenerate,” i.e., vanishes in almost every realization!
Geophysical signals tend to live inside the unit square,
while the canonical (“multiplicative” and “additive”) models
live on the axes. It is of interest to recall that random
“Devil’s staircases” (integrals of random multiplicative
cascades) live on the right boundary, and randomly
positioned power-law singularities live on the upper
boundary.


