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Standard Gaussian-type statistics are not really adequate
to describe atmospheric variability; this traditional approach

implicitly dismisses fluctuations as "noise" of use only in
computing a standard deviation which, together with the

mean, presumably varies so little in space and time that
one can meaningfully speak of "climatological" values. In

geophysics, unfortunately, this approach often fails. Means
and standard deviations not only exhibit no "climatology,"
but depend on the scale of space/time sampling.

We adopt the opposite viewpoint: variability is in fact the
signal, not the noise. This variability teaches us about the
fundamental physics at work. Even simple laboratory or

computational systems (and a fortiori geophysical systems)
are typically attracted into dynamical equilibria
characterized by a large range of length- and/or time-

scales, power-law energy spectra, qnd fractal geometrical
properties. For such systems, the concepts of scale-
invariance and/or multifractality provide the most productive
framework for data analysis and simulation.

Typical atmospheric signals exhibit non-stationary behavior.
Our first task is therefore to define the most interesting

stationary aspects of such non-stationary datasets. One
method for doing this, called "Singular Measures," focuses
on the absolute values of the gradientfield, which is more
likely to be stationary; as we progressively degrade the
resolution rof this field, taking powers qand averaging, the
results appear as power-laws in terms of the resolution r
where the exponent is a function of q. Another method,
called "Structure Functions," focuses on the absolute

values of the differences that occur in the data over
arbitrarily large or small scales. For detailed descriptions
of both methods, we refer to Davis et al. (1993a) for a
graphically based tutorial and to Davis et al. (1993b and
refers therein) for a wavelet-based approach.

Singular Measures are currently attracting more attention
than the once more popular Structure Functions. This is
largely due to their close connection with multiplicative
cascade models, first invented to describe turbulentenergy
cascades. While there is no completely general connection
between the two methods, for a specific physical process
or stochastic model, a relation may exist. However, in a
typical data analysis situation, we have no inkling whether
such a relation exists; in fact, one of our goals is to find a
statistical connection between the fluctuations of the field
and the fluctuations of its gradients. (We proceed by
analogy with classical theory, where a complete description
of the system calls for both energy [field] and flux [gradient]
terms.) We therefore advocate the use of both methods of
analysis, either independently (Davis et al. 1993a) or
jointly (Davis et al. 1993c). Indeed the two techniques
reveal quite different and, in many respects, complementary
aspects of the data and, hence, of the underlying physical

processes.

Structure Functions characterize the non-differentiability
or "roughness. of the data, as well as its degree of
stationarity. ,As an example, Figure 1ashows atime-series
of cloud liquid water content (LWC) measured during the
Atlantic Stratocumulus Transition Experiment (ASTEX)
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Figure 1. 10Hz LWC data collected with the Gerber PVM-1 00 during an ASTEX research flight (Gerber 1992). (a) a
segment of LWC data from 17 June 1992. (b) Absolute small scale gradient field of the dataset in (a). t

Figure 1 a. The spikes ("singularities") tend to cluster and
to concentrate on sparse subsets of space ("fractals").
Usually many different degrees of singularity are observed
in the gradient data, indicating the presence of a multifractal
field, so, here too, an infinite number of exponents are
needed to describe the data statistically. The simplest of
these exponents, the "information" dimension D, (e.g.,
Hentschel and Procaccia 1983), measures the size of the
set occupied by those singularities that contribute most
significantly to the mean (of the absolute gradients). If D,
= 1, this set has the same dimension as the full time interval
and there is no intermittency; if D, = 0, this set consists of
only a finite number of points (including the case where the
gradient field is reduced to a Dirac S-function). Following
Schertzer and Lovejoy (1987), it is convenient to use C, =
1-D" which ranges from 0 to 1 as the intermittency of the
gradient field increases from none to the S-function case.

field program in June 1992. The most straightforward
measure of the roughness of this graph is its fractal
dimension 0 (Mandelbrot 1977): if Og = 1, then the graph
is smooth (di~erentiable), while, at the other extreme, if Og
= 2, the graph is so discontinuous that it fills a whole region
of two-dimensional space. An alternative quantification of
the "smoothness" of the data is H1 = 2-0g' which ranges
from 0 to 1; at H1 = 1/2, one finds, for example, the case of
a one-dimensional random walk. Another, a priori
independent, measure of non-differentiability, possibly
discontinuity, is the power spectrum exponent (e.g., =
-5/3 for Figure 1 a). One can define an infinite number of
other exponents, all of which are organized in a "multifractal"
hierarchy (Parisi and Frisch 1985).

The Singular Measure method highlights the "intermittency"
present in the typically very spiky absolute gradientdataset;
see Figure 1 b for that associated with the LWC data in

40



Cloudy Skies

In conclusion, we aim to characterize the 3D structure of
clouds (as sampled by 10 transects of LWC) using
extensions of simple, robust, and turbulence-proven
multifractal statistical methods and models. We are aiming
for the simplest possible stochastic models with the
minimum number of free parameters, yet one capable of
capturing variability on the widest possible range of scales.
This is obviously an important prelude to the theoretical
and empirical study of cloud radiation problems. Beyond
that, we believe there will be fruitful applications of these
general-purpose scale-invariant data analysis methods
for many other Atmospheric Radiation Measurement (ARM)
Program purposes: e.g., comparisons of model output with
ARM observations at a much deeper level than traditional
mean-variance; and interpolations and extrapolations in
space and time scale, to mention just a few possibilities.
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and, finally, differentiable functions typical of dynamical
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Gaussian or even bounded gradient fields, hence C1 = O.
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one in Figure 1 a and three from the 1987 First ISCCP(a)
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experiment.
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Figure 2. Multiplicative and additive models populate the axes; whereas, "hybrid" or "multi-affine" models populate the
plane itself. This new class of models contains, as a simple example, randomly positioned Heaviside steps; they are
almost everywhere differentiable C1 = 301, but their gradients are o-functions (C1 = 301). The arrows indicate the effect

of "turning on" the smoothing parameter in two other hybrid models discussed in the text. Note that turbulent velocity or
passive scalar transects typically have about the same H1 but a higher C1 than we find for our LWC data.
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