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The main purpose of the ARM program is to provide the
necessary data to develop, test and validate the
parameterization of clouds and of their interactions with
the radiation field, and the computation of radiative transfer
in climate models. For the most part, however, the ARM
observations will be imperfect, incomplete, redundant,
indirect, and unrepresentative. This is unavoidable, despite
the best efforts at equipping the Cloud and Radiation
Testbed (CART) site with the best instruments. To
understand these limitations, we must consider the structure
of a climate model and the observation constraints.

The basic prognostic variables of any climate mode! are
atmospheric temperature, horizontal wind components
and humidity, and some surface variables: surface pressure,
snow amount, soil temperature, etc. These variables are
defined at a set of grid points (or, equivalently, as a set of
spectral coefficients) at a small number of vertical levels.
The grid boxes generally are a few hundred kilometers on
the side, and hundreds to thousands of meters thick. The
radiation scheme and cloud parameterization therefore
use as input quantities averaged over the model grid box,
and produce average fluxes.

By contrast, most of the ARM observations at individual
sites will be obtained in a relatively small area compared
to the scale of one grid box of a climate model. This is
certainly true of radiosonde data, which sample extremely
small volumes, both in time and space, but it also applies
to most other observation techniques. ARM observations
will thus be unrepresentative, meaning that they will be
affected by scales of motion that do not exist in climate
models. This question of scales and representativity of the
data may be particularly serious for the radiative processes,
which are highly nonlinear.

Besides fairly infrequent radiosondes, in situ observations
of the atmosphere over the ARM sites will not normally be
available because of cost considerations. Instead, the
ARM plan calls mainly for'remote sensing instrumentation.
This means that we are not measuring temperature or
moisture directly, but indirectly through their effect on
electromagnetic radiation.

Although different instruments are available and will be
used to measure the basic variables of climate models-
temperature, humidity and winds-these measurements
are not sufficient to completely validate cloud
parameterizations or radiation schemes. Many quantities
that would be needed for this purpose will be unavailable,
except possibly during campaigns or special observing
periods. Vertical profiles of radiative fluxes, cloud droplet
distribution, aerosol distribution, turbulent fluxes within
clouds, or optical properties of ice crystals are but a few
examples. In many respects, the data will thus be
incomplete, but, on the other hand, some quantities will be
measured or inferred by several different instruments or
methods, with different error characteristics.

We need a way to reconcile conflicting observations. This
problem can be illustrated by comparing temperature
observations made with two different radiosondes
(Figure 1). One is the ARM data on 29 October and the
other one the Oklahoma City (OKC) sounding of the
National Weather Service (NWS) 4 hours later. One obvious
difference is the resolution. In the NWS sounding we only
have the data at the mandatory levels. The questions are
"Which profile is more appropriate for a climate model?"
and "Can the two sets of data be reconciled?"

Finally, measurements are obviously not perfect. Instrument
errors can be minimized but not entirely avoided. In addition,
the effects (on the measurements) of the scales that are
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Figure 1. Dewpoint temperature profile at Oklahoma City (OKC) and at the ARM site, 4 hours apart.

not represented by the climate models cannot be
distinguished easily from actual observation errors, except
that they may be spatially correlated. Furthermore, when
remote sensing is used, the retrieval methods introduce
errors which cannot be avoided. In addition, remote sensing
measurements may have exotic error characteristics.

Inaccuracy, incompleteness, redundancy, unrepresenta-
tiveness, and indirect measurements are all problems with
which the weather forecasting community has been
struggling for years. Various techniques of data assimilation
have been developed to deal with them. Common to all the
modern techniques of data assimilation is the idea that all
the information available about the atmosphere should be
used, and that includes not only the observations, but also
our knowledge of the physical processes, which can be
expressed in a model. The mode! is used to ensure time
continuity and to constrain the analysis to be consistent
with the physics of the atmosphere and representative of
the desired scales. Estimates of the expected errors of the
various data sources can also be used to combine the
observations and the model estimate in an optimal way.
Finally, the mode! can provide estimates of quantities that

are not observed. While these estimates are not necessarily
"the truth,. they are compatible both with the other
observations and with the model constraints.

The most advanced methods of data assimilation make
use of the variational principle, which consists of adjusting
some parameters of the model to minimize the difference
between the observations and the model simulation. One
of the major advantages of this method is that it is quite
easy to include indirect measurements, as long as the
quantity measured can be simulated by the model. For
example, it is not necessary to use a retrieval method to
turn the radiances of remotely sensed observations into
temperature profiles. The radiances can be used directly
because the model can estimate the radiances
corresponding to its own temperature profile. Surface
fluxes, precipitation, or cloudiness observations can also
be used.

The variational method can be expensive because it
requires an iterative minimum search, which involves
running the model many times. In the ARM context,
though, we are interested in data assimilation at a single
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site. Therefore, we can use a single-column model, which
makes the variational method quite feasible, even with
modest computer resources.

Our purpose is twofold: to explore the variational data
assimilation technique, which has not yet been used in an
operational context, and to provide to the ARM community
a tool to turn the observations into the measurements that
are needed to develop and validate climate model

components.

for the CART site. Once these parameters are set, we tend
to prefer using nudging terms as control variables. Derber
(1989) found that this resulted in a better analysis; it also
has the advantage of resulting in a continuous description
of the atmospheric state, without jumps at the beginning of
each assimilation period.

In the minimization process, we need to compute the
gradient of the cost function with respect to the control
variables. This is used to determine the direction and size
of the step in the minimum search. When the model is
nonlinear, the gradient cannot be written analytically, but
it can be computed by integrating the adjoint model, which,
in a discrete model, is the transpose of the linear tangent
model (Hoffman et al. 1992).

Variational Data Assimilation

The ALFA model

I introduced the concept of variational data assimilation
and adjoint method at the 1992 Science Team meeting. I
summarize it here briefly.

A model is used to simulate the evolution of the atmosphere
during an assimilation period. The assimilation period
should be long enough to include enough observations to
constrain the model, but short enough that the evolution of
a small perturbation can be described by the linear tangent
model (L TM)(a). A period of 12 to 24 hours seems to be
reasonable.

As the model is run, we compute a cost function, which is
essentially a measure of simulation errors. Typically, it is
the weighted sum of the squared differences between
observations and model output, the weights being the
inverse of the expected errors. Other constraints can be
introduced in the cost function as will be seen later.

The method then consists in adjusting some model
parameters (called control variables) to minimize the cost
function. At the minimum, the model simulation becomes
the "analysis." We have different choices of control
variables. They could be model physical parameters that
are not well known, the initial state of the simulation, some
nudging terms in the model equations that account for the
deficiencies of the model, or a combination of all of these.
We have been experimenting with the different pqssibilities.

Initially we will concentrate on the model'$ physical
parameters in order to find the optimum set of parameters

The model used in this work is an extension of the AER
Local Forecast and Assimilation (ALFA) model, which we
started developing at Atmospheric and Environmental
Research (AER) with the goal of doing local forecasting
(Louis et al. 1990), It is a single column model that
computes all the physics in the ground and atmosphere

and takes the horizontal derivatives needed for the
advection terms from a large scale forecast (or analysis).
In forecasting mode, the model would be used to compute
how the local conditions modulate the large scale flow

predicted by a global or regional model. The adjoint
technique is used to optimize the model parameters.

Much of the work in the first 2 years of our ARM contract
has been to incorporate a sophisticated radiation scheme
into the ALFA model, The scheme chosen is the one
developed by Toon et al. (1989). It makes use of a

generalized two-stream approximation and is designed
for vertically inhomogeneous, multiple-scattering
atmospheres. We have modified it to allow for fractional
cloudiness and have written its adjoint, We have also

written the adjoint of the convection scheme (Anthes et ai,
1982) and the stratiform precipitation scheme.

An example of the results obtained with the T oon scheme
is given in Figures 2 and 3, which show the computed solar

and downward IR fluxes for 8-9 July 1992 at Oklahoma
City, During the day, the model computes about 50%

cloudiness; at the end of the second night, it computes
100% of low clouds.

(a) The linear tangent model is the forecast model linearized around
the actual trajectory followed by the forecast model in the phase

space.
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Computed solar fluxes for the OKC station, 8-9 July 1992. Clear and cloudy computations are shownFigure 2.
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Figure 3. Computed downward infrared fluxes for the OKC station, 8-9 July 1992. Clear and cloudy computations are
shown separately.
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every 12 hours. A24-hour forecast with the new parameters
is then performed from the state at the end of the optimization

period.

In FiglJre 5 we use the Derber nudging algorithm to

assimilate data during the first day. We have used constant
nudging: at each time step we add constant terms to all the

tendency equations. These terms are different for all the
variables and also depend on height. They are our control
variables. They are all zero at the start of the assimilation
procedure. The iterative process is stopped when the

forecast error during the first day is minimum. Again, a
24-hour forecast is performed from the end of the

assimilation period.

Note that this kind of output can be compared to radiometric
measurements and can therefore be used in computing
the cost function in data assimilation. That is something
that no other data assimilation method can do easily. In
fact, much effort has been put into developing temperature
retrieval techniques for satellite data because the
operational data assimilation schemes could not use the
radiances as input data.

Although writing the adjoint of a mode! is not terribly
difficult, and somewhat mechanical once the linear tangent
model has been written, debugging it is quite a challenge.
To test the L TM, we estimate the gradients by finite
difference (by slightly perturbing the input of the original
model) and compare them to the output of the L TM. The
adjoint can be tested in two ways: 1) ensure that the scalar
product of the input of the L TM by the output of the adjoint
is equal to the scalar product of the input of the adjoint by
the output of the L TM. or2) compare the gradient computed
by the adjoint with that computed by the L TM. These
should agree to within machine precision. Unfortunately
both of these tests are global in nature; that is, they test the
entire code at once. If a discrepancy is found, there is no
indication where the error might be!

Conclusions

Data Assimilation Tests

After struggling (somewhat longer than expected) with
writing the adjoint of the Toon radiation scheme, we are
now at the point where we are beginning to get results of
model optimization and data assimilation using the adjoint
method. The first results are very encouraging, as can be
seen in the figures shown here. We are confident that the
variational data assimilation method, using asingle-column
model, will prove to be a powerful tool for data fusion and
data assimilation.

A lot of work remains to be done. Optimization of the model
parameters needs to be done with a much longer series of
data, to cover different meteorological situations. The
Oerber nudging method will require considerable tuning,
especially in defining the vertical profiles of the nudging
terms. Up to now we have let them adjust freely, but that
creates a problem when observations are available at only
a few levels. A smoothness constraint should probably be
enforced.

So far, we have also chosen fairly simple situations,
avoiding convective cases. It is not known yet whether the
kind of thresholds involved in the convection will create
convergence problems in the minimization. Finally we
need to develop what might be called "observation
simulators," i.e., algorithms to create output similar to the
observed quantities, for as many of the ARM instruments
as possible.

We are now doing an extensive set of tests of both the
model optimization and data assimilation. So far, we have
only used NWS data for Oklahoma City, but we will soon
start using the ARM data as well.

We show here a couple of examples. In both figures we
show the surface temperature observations for 2 days; our
ALFA forecasts before optimization, which we al~o call first
guess; theALFA analysis forthe first day; and the resulting
forecast for the second day. The first guess forecast is
performed with what we think may be "reasonable" physical
parameters for the Oklahoma site, with the analysis of the
NWS as initial condition.

In Figure 4, we do an optimization of the model parameters,
using data for the first day. Although the figure shows only
surface temperature, all the available NWS data are used,
i.e., surface temperature, dewpoint temperature, winds
every hour, and sounding profiles (mandatory levels only),
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Figure 5. Example of Oerber nudging assimilation at Oklahoma City. The assimilation is performed during the first
24 hours.
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