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curve fitting and statistical interpolation.lrl fitting techniques,
the fields are represented locally by analytical spline
functions whose coefficients are determined by a least
square method. Somewhat simpler malthematically, and
more often used, statistical interpolation defines the value
of the field at each grid point as the weighted average of
nearby data. The Cressman and the Barnes techniques
are two examples of statistical interpolation, which differ
mainly by the shape of the weighting ful1ction. Generally,
several passes through thedataare performed with different
weighting functions, making successive corrections to the
field to get as much information as possible out of the data.
It can be shown that these interpolation techniques act as
filters which eliminate the shorter wavelengths of the field.
The filtering properties of the method cal1 be controlled by
the shape of the weighting function.

The use of successive corrections naturally led to the
introduction of a first guess field which represented the
a priori information known about the field either from

climatology, persistence, or from a previous forecast.
Analyzing the differences between a first guess and the
observations, rather than the observations themselves,
has distinct advantages, especially if the first guess is a

forecast: it generates realistic fields even in data-void
regions, and it ensures the time continuity of the fields. It
can be said that the forecast model is a way to bring into
the analysis the information of all the pa:5t data. Thus, the
concept of assimilating data into a modl~1 was born.

At the same time as the concept of data assimilation was
developed (in the sixties), new source1; of data, mainly
from satellites, were becoming availabl.~. It was realized
then, that defining the weights purely on the basis of the
filtering properties of the weighting function was no longer
adequate. It was necessary to take into account the
relative accuracy of the different observation types, as well
as thatofthe firstguess. The concept of optimal interpolation
was then developed, pioneered by Gandin.ln this method,

This paper is a brief introduction to data analysis and

assimilation concepts; its purpose is to define the role of
data assimilation in the Atmospheric Radiation

Measurement (ARM) program. It may be useful to start
with a very short, and probably oversimplified, historical

perspective on the treatment of data in meteorology and,
more specifically, in weather prediction.

The original concept of data analysis was a ~ray of
establishing a picture of a meteorological field on the! basis
of more or less randomly distributed observations. Long
before the advent of computers, meteorologists were
routinely contouring fields by hand, using synoptic
observations. To a large extent, this was an art as much as
a science, but it allowed the development of techniques,
some mathematical and some purely graphical, to I=tredict
the evolution of the fields.

From very early on, it was recognized that data should not
necessarily be taken at face value and that "drawing to the
data" was not necessarily the best way to go. Not orlly did

the data suffer from measurement errors, but i't was
understood that one should not draw fields that contained
short waves of a scale that would not be properly sampled
by the distribution of observations, waves ~rhich,
furthermore, had little meteorological significance fro,m the
point of view of weather prediction. The question of

representativity of the data had to be faced from the

beginning.

Already in the days of hand analyses, models were used.
These were conceptual models which allowed, forexample,
the introduction of sharp gradients in frontal zones, even
when data were incomplete, and forced time continlJity in

the fields, in the same way as models are used today in
data assimilation.

With the development of computers, a lot of effort was
devoted to trying to automate the process of hand an,alysis
of meteorological data. Two main directions were followed:
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of the adjoint, it is possible to compute th'9 derivatives of the
forecast error with respect to all the parameters that are
used to bring the forecast closer to the observations.
Additional details about the use of the aldjoint are given in
the description of our ARM project.

In the context of ARM, it is clear that the role of data
assimilation will be mainly to provide a continuous, inter-
nally consistent picture of the atmosph4~ric state over the
Cloud and Radiation Testbed (CART;I site, in order to

provide appropriate initial conditions and verification data
for models and parameterization experiments. Two dis-
tinct but complementary points of view can be adopted:
mesoscale four-dimensional data assimilation (4DDA) or
single column assimilation (SCA).

In mesoscale 4DDA we are interested in the detailed
evolution on the fields with a resolution on the order of
10 km or so, to make it possible to de:scribe mesoscale
phenomena such as convective compleJ<es. This will allow

the study of the interaction between slubgrid and large-
scale processes, the development of hierarchical models,
and the validation of parameterization schemes. Mesoscale
4DDA, however, is very expensive and ~'ill probably not be
available on a routine basis for several J,ears. In addition,
mesoscale data assimilation is itself a sulbject of research.
Techniques that have been developed for the large scale
cannot necessarily be scaled down to me,soscale phenom-
ena for which dynamic constraints may be different and

error statistics are not well known.

Single column assimilation, which is the subject of our

ARM research, uses a single column model. Its intent is to
provide a picture of the evolution of the atmospheric fields
at the scale of the CART site, which is typical of that of a

climate model.

the weights are determined by the error covariance matri-
ces of the first guess and observations, including the
representativity errors, so as to minimize the eXIJected
analysis error.

The optimal interpolation method has been very su,ccess-
ful and is used today in many operational weather forecast-
ing centers. Its main drawbacks are that it is difficult to use
data that are not direct measurements of the ITlodel's
prognostic variables and that it is an intermittent scheme.
A new analysis is produced at periodic intervals, typically
six hours. This means that it does not provide acontinuous
picture of the atmosphere, and asynoptic data cannot be
used in the most effective way.

From the concept of optimal interpolation, there is only a
short step to the principle of variational assimilation. Varia-
tional assimilation consists of finding the evolution of the
atmosphere that is consistent with the model while mini-
mizing a cost function which may include constraint~) such
as smoothness, as well as the model simulation error. An
equivalent framework is Bayesian estimation, whici1 con-
sists of finding the most probable evolution of the atmo-
spheric state, given the observations, the a priori informa-
tion contained in the model, and any constraints that might
be imposed.

These methods are currently being developed. Theirmain
drawback is their cost, which is due to the fact that the
search for the minimum of the cost function or the maxi-
mum probability is an iterative procedure which rec~uires
the integration of the mode! and the computation of the
gradient of the cost function at each iteration.

An efficient way of computing this gradient is to sol'/e the
adjoint model. With one forward integration of the model
over the assimilation period and one backward integration
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