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whereas, a local model can providl3 output with high
temporal and vertical resolution, as wEill as fluxes, heating
rates, etc.

The problem of scale representativity t~annot be underes-
timated. A climate model output (ever! a "1-0 GCM") can
be compared with a point measuremerrt only if everything,
including surface boundary conditions, is completely uni-
form over the scale of the model grid point. This is a rare
occurrence. Data assimilation can filter the data to the
proper scale for use in single column l'nodels.

To develop our data assimilation system, we build upon an
AER model which we have used to explore parameter
optimization, using the adjoint techni(~ue. We call it the
AER Local Forecast and Assimilation ,:ALFA) model. The
scale of the ALFA model is determined by the horizontal
derivatives and the values chosen for the ground param-
eters, which define the bottom boundary conditions.

The ALFA model is a single column model that solves the
same equations as a climate model, but uses large scale,
three-dimensional analyses or foreca~;ts for all the hori-
zontal derivatives. The parameterization schemes cur-
rently used are fairly similar to state-of-the-art climate
models, including vertical eddy fluxes of momentum, heat
and moisture, stratiform and convective precipitation, and
a three-layer ground model. The Toon 'et al. (1989) radia-
tion scheme is being incorporated.

The data assimilation will be based on variational prin-
ciples in which the forecast computed by the model during
the assimilation period is modified until the difference
between forecast and observations (the "objective func-
tion" or "cost function") is minimized. These modification
will be done by adjusting extra terms (the nudging terms)
in the model equations, which are USEtd as control vari-
ables.ln away, these extra terms accountforthe imperfec-
tions of the model. They pull the model solution towards the
observations. They will be different for each prognostic
variable, but will be constant during the assimilation
period. The final result is close to the observations, but is

Atmospheric and Environment Research's (AER]I project
forthe Atmospheric Radiation Measurement (ARM) project
is to further develop and test a model originally dl3signed
for local weather prediction. This model will be used for
three distinct but related purposes: 1) to provide ia single
column model testbed that simulates a global climate
model, in order to facilitate the development and testing of
new cloud parameterizations and radiation models; 2) to
assimilate the ARM data continuously at the scale of a
climate model, using the adjoint method, thus provi(jing the
initial conditions and verification data for testing
parameterizations in single column model studies; 3) to
study the sensitivity of a radiation scheme to cloud param-
eters, again using the adjoint method, thus demonstrating
the usefulness of the testbed model.

In the first couple of years of the contract we will concen-
trate on developing the data assimilation system. Two of
the big problems with using the ARM data will be its scale
representativity (or lack thereof) and its incompleteness.
Data assimilation is one way to address both problems.
Data assimilation can be described as a way to generate

a complete and continuous picture of the atmospheric
profile above the Cloud and Radiation Testbed (CART)
site. A model is used to define the characteristic scale of
the solution, to provide time continuity, and to ensure

dynamical balance of the fields. The model also provides
an estimate of atmospheric quantities that are not (jirectly

measured. To the extent that the model is a reaslDnable
representation of the atmosphere, these computed quan-
tities are, at least, consistent with the observations.

One could argue that using the National Meteorological
Center (NMC) analyses would be sufficient to describe the
atmosphere and provide initial conditions and verification
data for one-dimensional (1-0) general circulation models
(GCMs), especially if some of the ARM data strealm was
used by NMC. However, a local model can be optimized for
the site, producing a more accurate analysis. For practical
reasons, the frequency of the NMC analyses and the
amount of information available may not be sufificient;
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Let us write the model as

(1)Xn+1 = Xn +/(X,) + Vn

where X is the vector of model variabIE~s, v is a nudging
term and the subscripts indicate the time step. We can
complete the model by adding the definition of the cost
function, and a statement that the nlJdging terms are
constant in time:

J
n+1

= In + Hn (x,) (2)

(3)v = V
n+1 n

approximately consistent with the model and is constrained
by the characteristic scale of the model. Some of the
parameters of the model, which represent physical quan-
tities that are not well known, may also be used as (~ontrol
variables.

Figure 1 is a schematic comparison of the variational
method and a more traditional assimilation method such
as optimal interpolation. Using nudging terms produces a
continuous description of the state of the atmosphere,
which is consistent with the observations, while filtering out
the unwanted small scales. In optimal interpolation, an
intermittent series of analyzed fields is created by a linear
combination of the background fields (or "first guess,") and
the observations.

To find the appropriate nudging terms, we use a standard
minimum search algorithm. This requires the computation
of the gradient of the objective function (the forecast error
during the assimilation period) with respect to the control
variables (the nudging terms). An efficient way to compute
this gradient is to use the adjoint of the perturbation model.

Hn is a measure of the forecast error at time step n
(typically, the squared difference between a forecast quan-
tity and an observation)
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Figure 1. Comparison of two data assimilation methods.. Each figure represents two assimilation cycles. The ,:;rosses represent
observations, and the solid lines represent model inte!~rations.
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The perturbation (or linear tangent) equations corrl~spond-
ing to this model are

0'
) .(X:I)0 In+1

1 ) v:+1

(6)

Dxn+1

SJn+1

8Vn+1

= Oxn + V z/ {x,;. Oxn + OV n

= OJn + VzHn{X';'Oxn

= ov
n

(4) When this model is integrated backwards from the last
time step N to time step 0 with initial c:onditions: X*N = V*N
= 0 and J*N=1, it can be shown that

or, in matrix form:
v; = VvJN (7)

/1 + V%/ (X,) 0

v % Hn(X,) 1

0 0 ~).(~:)
(5)

where V yJN is the gradient of the objl~ctive function with
respect to the nudging term, which we 'Nant for the minimi-
zation algorithm.

Figure 2 is a rather complicated diagram that attempts to
show schematically how the adjoint method works. It
represents one cycle of the data assimilation. Currently,

The adjoint model is defined by taking the transpose of the
matrix in (5):
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Figure 2. Schematic diagram of one cycle of the variational data assimilation. showing the flow of data.
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we are finishing writing the adjoint of the Toon et al
radiation scheme.

rates and photodissociation rates in inhomogeneous mul-
tiple scattering atmospheres. J. Geophys. Res. 013,16287-
16301.
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