Airborne Remote Sensors Summary

- Instrumental capabilities
- Scientific capabilities
- Scientific needs
- Measurement / community challenges and requirements

Airborne Remote Sensors Summary (1)

• Instrumental Capabilities:

- Many active remote sensors (single- and multi- λ radar and lidar, polarization sensitive, elastic and molecular lidars)
- Solar and IR radiation measurements (radiance and irradiance [direct and diffuse], broadband and spectrally resolved, polarized)
- Microwave radiometers
- Imagers
- Small and large
- Many different airframes
- Various levels of maturity.

Airborne Remote Sensors Summary (2)

• Scientific Capabilities:

- Location of cloud and aerosol layers
- Profiles of aerosol extinction, backscatter, and polarization
- Cloud extinction profiles for $\tau < 3$
- Cloud phase determination
- Liquid water and ice water contents
- Cloud particle motion
- Spectrally resolved radiance and irradiance, radiative flux
- Surface properties (e.g., albedo, BRDF, soil moisture, temperature)
- Cloud optical depth and cloud effective radius (vertically integrated)
- LWP and IWP
- Water vapor profiles (q and RH)
- AOT (function of λ)
- Intrinsic aerosol parameters (e.g., ω_0 , g, P(Θ), m_r and m_i, all functions λ)
- Trace gas amounts
- Horizontal winds.

Airborne Remote Sensors Summary (3)

• Scientific Needs:

- Everything in the previous "scientific capability" can be improved
- Wind profiles, especially vertical velocity
- Atmospheric state profiles, especially temperature
- Better horizontal, vertical, and temporal resolution (e.g., around cloud edges), especially $N_d(r)$ and $N_a(r)$
- Ability to better compare in-situ and remote sensors (time/space matching)
- Aerosol absorption (profiles, multi- λ , ambient conditions, f(RH), all λ)
- Change in aerosol scattering at high RH
- Ice particle size distribution and habit
- Far-infrared spectral radiance
- LW and SW radiative flux divergence profiles
- Latent heat / precipitation (quantified, 3-d distribution)
- Remotely sense regions of ice supersaturation (esp. in UT)
- Boresighted imagers for context (like LaRC HSRL)
- 3-d fields of cloud / aerosol / atmos state
 - Horizontal "profiles" at several levels for convection studies
- CCN and IN.

Airborne Remote Sensors Summary (4)

• Measurement / community challenges and requirements:

- Calibration key -- need standards and traceability
- Good engineering needed (e.g., stray light suppression, cosine response, thermal stability, overlap correction)
- Improve resolution (spatial, vertical, temporal)
- Reduce random and correlated error
- Quantify the correlated error in measurements
- Full error analysis, propagating measurement and assumption uncertainties into derived product
- Information content: what is the observations really saying relative to the assumptions built into the method
- Algorithm comparison needed (process same real & simulated datasets)
- Comparisons of like datasets and closure exercises to identify biases
- Analysis of data from different sensors provides challenge to match the temporal and/or spatial sampling
 - New approaches (algorithms) needed
- Smaller size, less power, more automated instruments
- Forward looking remote sensors; challenges include eye-safety for lidar
- Stacked aircraft (including towed arrays)
- More analysis time needed; many datasets aren't fully analyzed.