Discussion on small ice particle measurements

Definition of small ice particles:

1<D<100µm

What is ice particle size?

D_{max} , D_{av} , D_{EqA} , D_{EqM} , D_{eff}

The difference between these definitions may be 20-30%

measurement methods and challenges

- Short term works (<3 years):
- minor improvements of existing probes
- developing of retrieval techniques based on theoretical and laboratory calibrations

ii) Long term works (~10 years)

- Developing of new techniques and new instruments
- Facility for standardization of calibration techniques of cloud microphysical measurements

Solutions for existing cloud microphysics probes (Short range):

- 1. Retrieval algorithms for imaging probes OAP-2DC/2DP, CIP, PIP, 2DS
 - a) use several grey levels to retrieve D and Z of individual images based on Fresnel diffraction calculation
 - b) algorithms for statistical retrieval of ensemble of images (distortion function)
 - c) algorithms for size retrieval of non-spherical particles based on Fresnel diffraction calculations
 - d) theoretical accounting of the response time of probes' electronics
 - e) calculation of the effective width of SA for non-spherical particles of different shapes
 - f) retrieval of sizes of partial images

2. Retrieval algorithms for scattering probes: FSSP, CDP, CAS

- a) calculation of forward scattering for non-spherical particles of different shapes (hex columns, plates, hollow hex prisms, spheroids, irregulars, etc.)
- b) Calculation of response functions for non-spherical particles with different orientation

Formation of images for coherent illumination (Fresnel diffraction)

Ð

۰

o

0

0

О

••

0

Applying retrieval algorithm to a modeled measured size distribution

Depth-of-Field in imaging probes (coherent illumination)

$$DoF \propto D^2$$

 $n \propto \frac{1}{SampleVolume} \propto \frac{1}{DoF} \propto \frac{1}{D^2}$

 $\Delta n \propto \frac{\Delta D}{D^3}$

OAP-2DC

D	25µm	50µm	75µm	100µm	125µm	150µm	175µm	200µm
DoF(mm)	1.5	6.0	13.5	24	38	54	74	96

<u>Solutions for existing cloud microphysics probes</u> (Short range):

3. Laboratory calibrations of imaging probes OAP-2DC/2DP, CIP, PIP, 2DS

- a) spinning disc calibrations by circular dots 20µm<D<2mm, 10<V<100m/s
 b) spinning disc calibrations by non-circular shapes (DMT has discs)
 c) an invite (and ED) measurements of the mean energy time.
- c) spinning wire (or LED) measurements of the response time
- d) calibrations by non-spherical particles (pollens) in lab wind tunnels

4. Laboratory calibrations scattering probes: FSSP, CDP, CAS

- a) spinning disc calibrations (pinholes)
- b) calibrations by ice particles in cloud chambers/ towers
- c) calibrations by non-spherical particles (pollens) in lab wind tunnels
- 5. Prepare a manual describing theoretical algorithms and laboratory calibrating techniques

Spinning disc calibration installation

1

d

Parker

Custom designed DMT spinning disc

Spinning disk calibration: D=150µm

<u>Solutions for existing cloud microphysics probes</u> (Short range):

- 6. Wind tunnel calibrations Cox (New York, US), NRC M7 (Ottawa, Canada)
- 7. Redesign of probe inlets: FSSP, CDP, CAS, OAP-2DC, CIP, PIP, 2DS
- 8. Redesign of hot-wire sensors to minimize ice bouncing (Nevzorov probe, T-probe)
- 9. Extinction probe: "must" probe

Cox Wind Tunnel

<u>NASA High Speed</u> <u>Video</u>

FSSP inlet D ~ 5cm TAS ~ 70m/s

Nevzorov TWC sensor (Shallow Cone)

Cox Wind Tunnel

NASA High Speed Video

TAS=80m/s

<u>Solutions for existing cloud microphysics probes</u> (Short range):

10. Processing software

- a). Standardization of retrieval algorithms and processing software (bank of subroutines for existing aircraft probes).
- b). Intercomparison of cloud microphysics software

11. Field campaigns:

- a) Develop simple portable calibrating tools
- b) Preflight and postflight calibration cloud microphysical probes

Long term works (~10 years)

- Developing of new techniques and new instruments

 a) "non-intrusive" techniques (e.g. PDA)
 b) Change coherent to non-coherent illumination in
 imaging probes
- Slow moving platforms (balloons, helicopters)
- Facility for standardization of calibrating techniques of cloud microphysical measurements