Design and Development of A Small Instrument To Investigate Airborne Aerosols

In support of the US Army Research Laboratory

Gregory W. Walker

Manager

Poker Flat Research Range

Geophysical Institute

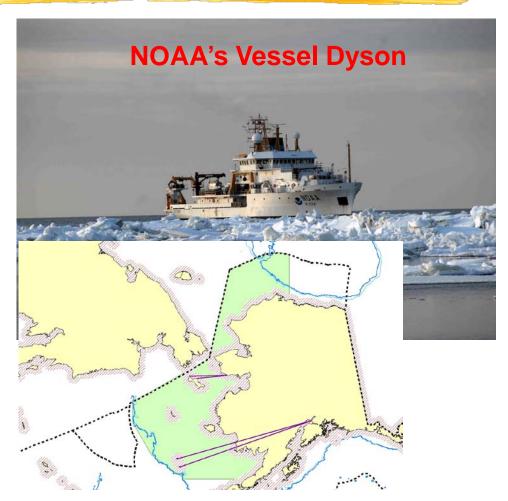
University of Alaska Fairbanks

Phone: 907-455-2102

Email: Gregory.Walker@gi.alaska.edu

Catherine F. Cahill
Associate Professor
Geophysical Institute and Department
of Chemistry & Biochemistry
University of Alaska Fairbanks
Phone: 907-474-6905
Email: ffcfc@uaf.edu

October 16, 2008



Conducting Marine Mammal Study Ship Testing

NOAA is planning an extensive
UAS based marine mammal
survey through our NOAA
Cooperative Institute for Arctic
Research (CIFAR), as part of their
UAS Arctic Testbed program.

UAS sea trials now

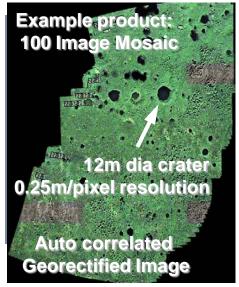
Operation scheduled spring 2009

University of Alaska's Unmanned Aircraft Program

The University is focusing on evaluating unmanned system operations and identifying hurdles for a new capability to become a financially feasible enterprise.

Providing Unique Professional Flight Services for the Research & Development Community

✓ Civil Government ✓ Science Community ✓ Industry

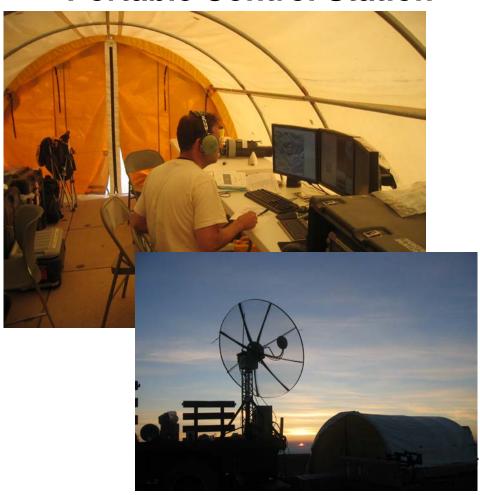

Three Directions Within Our Program

Safe Airspace Integration

New Payloads and Processing

Enhancement Testing in Field Operations

The University's Insight UAS Hardware


The Insight A-20 (aka ScanEagle)

Specifications

- 10.2 ft Wing Span
- 3.9 ft Length
- 26.5 lb Empty Weight
- 12.4 lb Payload and Fuel Load
- 44 lb Max Take-off Weight
- 20+ hr Endurance

Portable Control Station

Why Study Aerosols?

- Cause a variety of adverse human health impacts including:
 - increased morbidity (e.g. asthma, chronic obstructive pulmonary disorder, etc.)
 - premature mortality
- Degrade visibility
- Provide intelligence about activities
- Contain both natural and human-caused:
 - biological components such as bacteria and viruses
 - inorganic components such as heavy metals or radioactive species

Needed Aerosol Information

Aerosols need to be characterized by:

- Size
 - How big is it?
 - How far can it transport?
 - Where will it deposit in the lungs or environment?
- Concentration
 - How much is there?
- Chemical composition
 - What is it made of?
 - Where did it come from?
- Biological activity
 - What can it infect?

Needs are both spatial and temporal with high resolution

Sampling in AOs

The aerosol concentrations observed in many military AOs are higher than those experienced in the U.S. and known to cause adverse human health impacts

Proof of Concept Iraq Deployment

- Two stationary DRUM samplers
- Operated by a US Army RDECOM FAST team
- Data provided to Army and Navy medical and environmental health professionals

Baghdad Aerosols February-March vs. May-June

micrometers.

Ex Post Facto Biological Analyses

- Developing techniques for determining the amount of exposure the Warfighter receives to specific biological species such as fungi, viruses and bacteria
- Already being used on samples collected in the AO
 - For example: No anthrax or bubonic plague was seen in the first set of Iraq samples analyzed

Real-Time Biological Analyses

Real-time analysis for multiple specific threat agents such as anthrax and for total biological activity is being developed for use in the UAS-mounted aerosol sampler

UAS Aerosol Sampling

- Developing a lightweight, rugged, and easily-deployable instrumentation for characterizing aerosols over large areas
- Planned deployment on the Insitu Insight system (a.k.a. a Boeing ScanEagle)
- Collects real-time information on:
 - aerosol concentration
 - radiological activity
 - biological activity

Advantages of UAS Aerosol Sampling

- Spatially and temporally map aerosol composition and concentration
- Establish baseline aerosol characteristics and statistics by flying the same path multiple times and under multiple meteorological and emission situations
- Map plumes from known and unknown sources
- Examine changes in source emissions over time
- Provide a tactical level, rapid response of aerosol collection equipment to a suspected release of potentially hazardous compounds
- Reduce the exposure of personnel to hazardous compounds by remotely collecting samples

Climate Modeling Payload

Climate modelers need repeated measurements at defined points
Presently there are few methods to collect this data in the Arctic

Joint
University of Alaska
University of Colorado
Project

The payload needs are:

- 1. Meteorological information
 - + wind speed and direction,
 - + relative humidity,
 - + pressure,
 - + temperature as a function of altitude.
- 2. Incoming and reflected spectral radiation information

Miniature dropsondes can collect the necessary meteorological data

Summary of UAF Defense-Related Aerosol Efforts

UAF is:

- Developing next generation instrumentation capable of aerosol characterization with high temporal resolution in an area of operations
- Developing analytical protocols suitable for the characterization of biological aerosols within these samplers
- Demonstrating the effectiveness of the new instrumentation for many applications, including environmental and human health studies

Questions?

