

UAV-based lidar sensor for

next-generation suborbital platforms

-- and --

Development of a new airborne lidar instrument for

aerosol transport studies

Presented by Matthew McGill with Stan Scott, Shane Wake, Dennis Hlavka, William Hart, and Paul Newman

- 1. CPL: what it is, what it does
- 1. CPL, CLASIC, and that NASA A-Train
- 1. UAV-CPL on Global Hawk next-generation airborne science
- 4. Where to next? cloud-aerosol transport, a new instrument development

The NASA Cloud Physics Lidar: science and satellite validation from high-altitude

The Cloud Physics Lidar

CPL is a self-contained, autonomous backscatter lidar

CPL Data Example

Lidar profiling generates a time-height cross-section of the atmosphere, revealing cloud and aerosol structure.

Multiple cloud/layer features can be measured, *up to the limit of signal attenuation* (O.D. 3-4).

From this data we derive layer boundaries, optical depth, extinction, and depolarization.

The CPL web site is: http://cpl.gsfc.nasa.gov

- 1. Summary images for each flight.
- 2. Layer boundaries for PBL, elevated aerosol layers, clouds.
- 3. Optical properties, including
 - layer optical depth (e.g., PBL, cirrus, total)
 - layer extinction-to-backscatter ratio (S) used
 - layer extinction profile
 - layer transmission profile
 - images for extinction and optical depth
 - depolarization ratio (1064 nm only)

All data products are 1 second averages produced from the raw 1/10 second data.

All data products are produced for each wavelength.

The CPL web site is http://cpl.gsfc.nasa.gov

Example of CPL higher level data products

CPL data is archived on the CPL web site

http://cpl.gsfc.nasa.gov

ER-2 carried the NASA "A-Train simulator" payload of CPL, CRS, and MAS. Three A-Train underpasses provided unique validation opportunity.

NASA thanks DoE for the A-Train validation opportunity.

Example of CPL data from June 12, 2007

June 12, 2007

CPL-CALIPSO comparison: June 28, 2007

Combining lidar and radar reveals the whole profile

The new UAV-version of CPL: first to be integrated to NASA's Global Hawk

CPL on Global Hawk

UAV-CPL optical bench

UAV-CPL instrument housing

UAV-CPL mounting assembly

UAV-CPL handling cart and carrier assembly ("carrier assembly" is N-G's term for the frame and outer skin assembly)

UAV-CPL components

UAV-CPL optical bench

UAV-CPL instrument housing

laser power supply box

data system box

graphic stolen from Paul Newman, who stole it from someone else

Intended UAS-AVE Flights

#1. vortex fragment flight

Flight objectives:

- sample polar vortex for ozone depleted air
- sample polar fragment over Pacific
- coordination with Aura satellite overpass
- Pole-to-tropics sampling of air masses
- overflight of Mauna Loa lidar

#2. aerosol & pollution flight

Flight objectives:

- after takeoff, fly over plume near cyclone
- fly NW to Alaska, zig-zag across fire plumes
- fly SW to just east of Japan and examine aerosol and pollution outflow from Asia
- return along same path

CATS*: a new instrument for cloud-aerosol transport

*Suggestions for better acronym gladly accepted

Intended CATS data products

Simultaneous measurement of aerosol and wind, inherently provides off-nadir data.

Primary objective is to enable transport studies, Secondary objective is cloud-aerosol interaction.

Measurement concept

Measurement concept

Key: we can separate the components

Use of a Fabry-Perot interferometer results in different system response for the aerosol and molecular components of the total signal. In fact, the molecular return is imaged as a nearly flat spectrum that is easily subtracted from the total signal.

Key: we can separate the components

- 4. We also inherently have the aerosol-molecular ratio, (A + M)/M.
- 5. We can use rawinsonde or climatology to get molecular profile, $\beta_M T_M^2$

Inversion process

3 unique and uncorrelated pieces of information. Use of a multi-element detector results in an over-determined set of equations. The three components can be separated using a non-linear least-squares fitting method that uniquely extracts the components of the total signal.

How does the concept work?

A Fabry-Perot interferometer is used to resolve the spectral signature. Wavelength is a function of radius in the image plane. The challenge is to efficiently measure the annular image.

Holographic circle-to-point converter

U.S. Patent #631908

Our solution: use a custom holographic optical element with a linear array detector to measure the fringe pattern.

CATS instrument concept drawing

2-wavelength (532, 1064 nm), with depolarization at both wavelengths. High rep-rate, photon-counting detection, like CPL, but using a fiber laser.

Originally conceived as a "mini-CPL" for Ikhana or Global Hawk. It is funded, it is real...but now we want to combine it with the CATS instrument to provide continuous nadir profiling.

Measurement geometry

For wind, aerosol products: at nadir, continuous measurements at 1 sec (200 m) x 30 m resolution

For backscatter aerosol, depolarization products: off-nadir, sequential orthogonal measurements at 10 sec (2 km) x 60 m resolution

CATS system parameters

Nd:YAG, seeded
532 nm
200 Hz
≤10 mJ/pulse
100 microradians, full
angle
6 inches
45 degrees
200 microradians, full
angle
150 pm FWHH
10 cm
85%
1.2
16
400 m/s
100 m
30 m
~200 m/s
10 seconds (~2 km)
1 second (~200 m)
~20 km (65,000 ft)

development timeline

Project initiated	Aug 2008
Scanning telescope complete	July 2009
Receiver subsystem complete	Dec 2009
Nadir channel complete	Jan 2010
nitial test flight	Oct 2010

We have existing capability, as demonstrated by CLASIC ER-2 flights, that DoE-ARM can utilize for science. NASA is generally happy to partner in exchange for satellite validation opportunities.

We will soon have Global Hawk capabilities that DoE-ARM can utilize for science.

With my group's reputation for building quality, cost-effective instruments, we are embarking on development a new cloud-aerosol transport lidar. Targeted for completion in the 2010-2011 timeframe, this new instrument should be of interest to DoE-ARM.

Instrument specifications:

Mechanical and Electrical

- Size: instrument: 40"H x 16"W x 18"D power supply: 18"H x 19"W x 8"D data system: 17"H x 19"W x 6"D
- Weight: instrument, 182 lbs (carrier assembly ~45 lbs); power supply, 67 lbs; data system, 18 lbs. Total: 312 lbs (est.)
- Power: laser ~10 Amps 28VDC; heaters ~35 Amps 28VDC; data system ~2 Amps 110 VAC 400 Hz.

View ports/windows: 9" dia. nadir-viewing port (window supplied as part of instrument)

Programmatics:

Cloud/aerosol profiling Prototype has been flying on ER-2 since 2000 Designed to mount in Bay 3 Pathfinder for interfaces, cost estimating, operations First instrument for integration on GH

Instrument Requirements:

Control and Communication

Control Switches: 2 (master power, laser enable)
Communication Bandwidth: as much as possible, but we can sub-sample the CPL data as was done during TC4
Nav / Time inputs: yes (similar to ER-2 nav data, presumably)