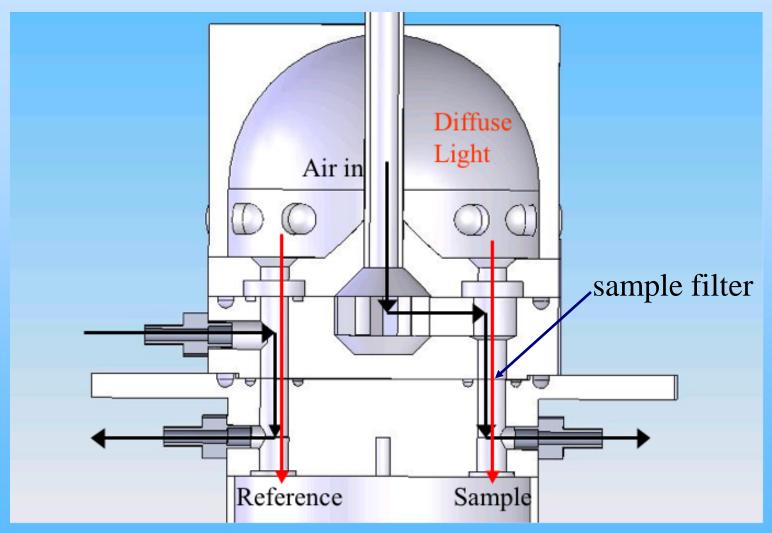
Miniature Multi-filter Continuous Light Absorption Photometer

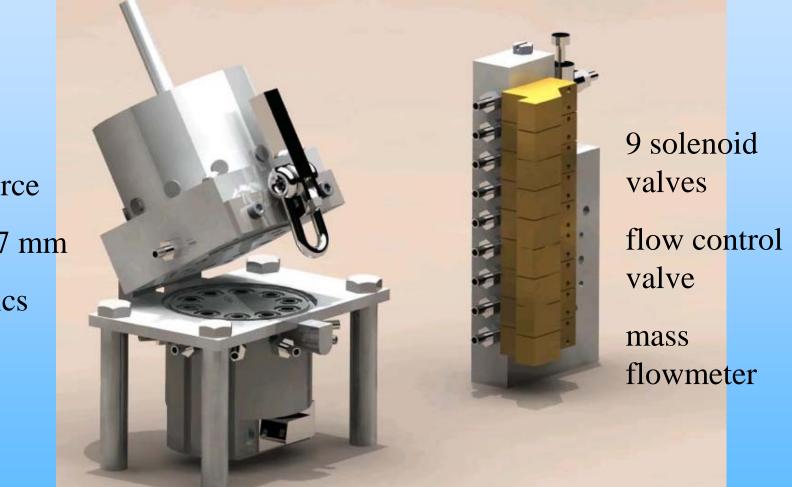
John A. Ogren and Jim Wendell Earth System Research Laboratory National Oceanic and Atmospheric Administration Boulder, CO

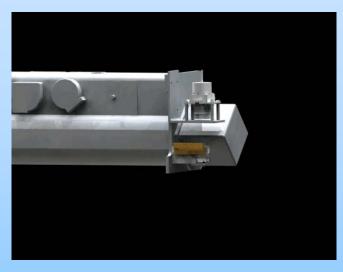
Motivation for new design


- Aerosol light absorption is a crucial contributor to radiative climate forcing
- Current instruments all have shortcomings
 - filter transmission
 - PSAP's single filter requires frequent changes
 - aethalometer is poorly characterized
 - MAAP has best optics, but only a single wavelength
 - photoacoustic is expensive and only marginally sensitive enough
 - photothermal interferometer is promising but unproven
 - extinction minus scattering
 - cavity ring-down extinction device is expensive
 - difference measurement adds uncertainty

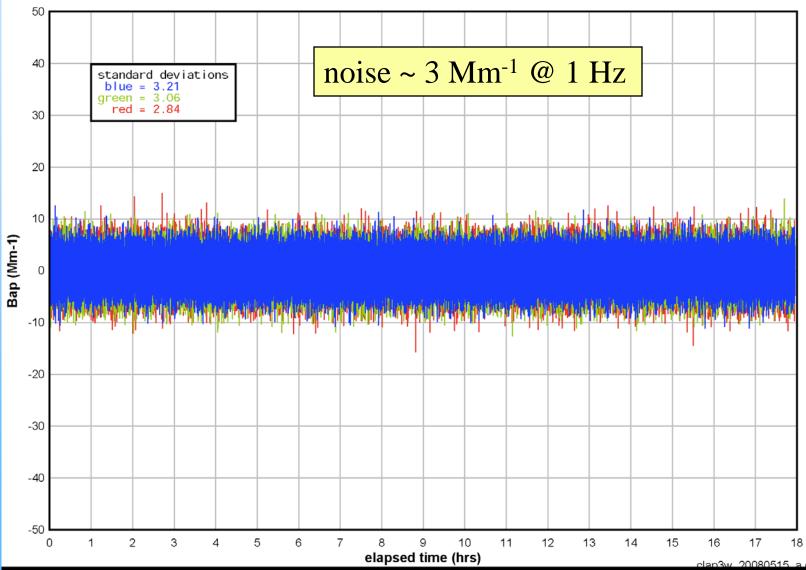
Design Features

- Small size, low power, low cost
- High sampling efficiency for particle $D_p < 10 \ \mu m$
- Multiple filters, with automatic switching
- Tight integration with nephelometer
 - climate forcing studies need both scattering and absorption
 - filter-based absorption instruments need scattering
 - similar wavelengths (~450, 550, 700 nm)
- Heated optics block and sample inlet
 - lab studies show PSAP sensitivity to changing RH
- Transparent data acquisition
 - raw data transmitted out serial port each second
 - internal data processing code publicly available
- Suitable for aircraft and ground-based monitoring


Cutaway of Instrument

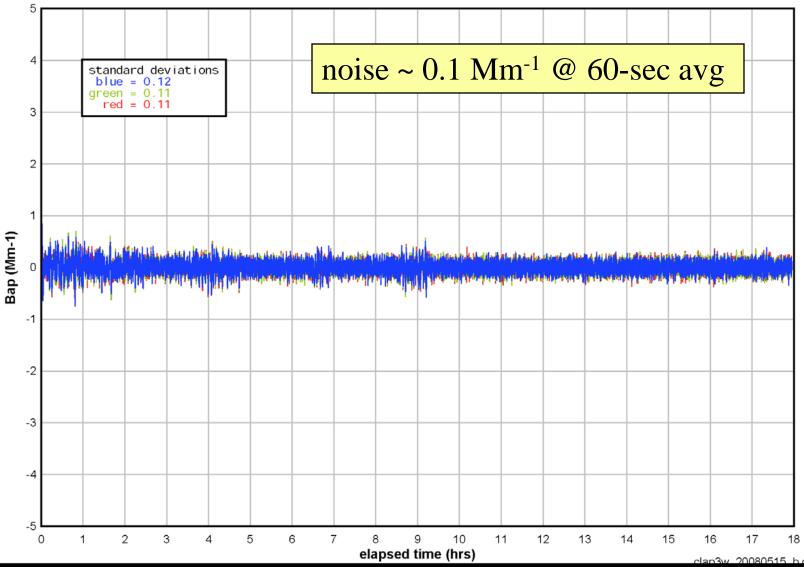

Separate Optical and Flow Control Blocks

Integration with Nephelometer


- Need 3-wavelength
 nephelometer for
 scattering correction
- Tight physical integration to minimize inlet losses
- Sample from neph exhaust, also gives zero checks

Prototype Performance - 1-sec

clap3w - 20080515


ddc114, 1-sec data

Prototype Performance - 1-min

clap3w - 20080515

ddc114, 1-sec data, 1-min moving avg

Data Processing and Calibration

- Address limitations of Bond et al (1999) scheme using a constrained two-stream radiative transfer model of particles+filter
- Calculations use optical depths (scattering, absorption, particles+filter), to include sensitivity of response to previously-deposited particles
- Calculations use asymmetry parameter derived from nephelometer for scattering correction
- Calibration with a variety of lab aerosols
 - pure scatterers, liquids and solids, mixed particles
- Multiple reference standards
 - extinction minus scattering
 - photoacoustic

Conclusions

- Filter-based measurements of aerosol light aren't the ideal approach, but they are
 - practical and affordable
 - small, low power, light weight, and inexpensive
 - multiwavelength
- Weaknesses...
 - sensitivity to scattering by particles
 - sensitive to phase of particles (liquid particles have a different interaction with filter fibers than solid particles)
 - particles are deposited on a substrate, rather than remaining suspended in air
 - sensitive to changes in pressure and relative humidity

Background Information for Tonight's Tour of NOAA Cessna 206

ARM In-situ Aerosol Profiling (IAP)

Objectives

- obtain aerosol climatology aloft
- determine relevance of surface climatology to vertical column

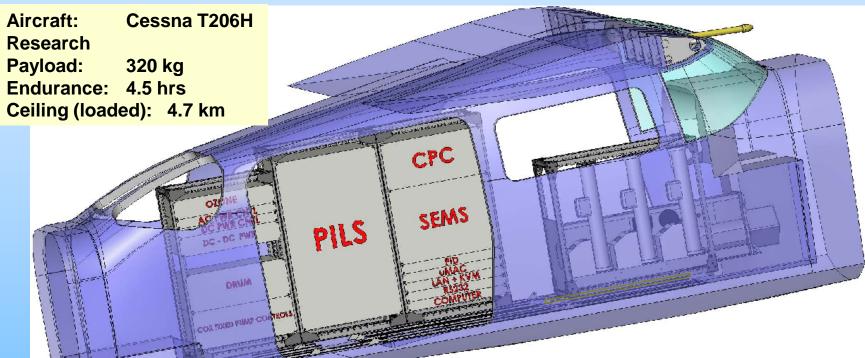
Measurements

- Light absorption, scattering, and hemispheric backscattering
- RH-dependence of scattering
- Temperature and RH
- Flask samples for trace gases (CO₂)

• Flights (2000-2007)

- 9 levels, 0.5-3.7 km asl (172XP)
- 12 levels, 0.5-4.6 km asl (206)
- Temperature and RH
- average ~100 profiles per year
- "KISS" approach
 - Keep it simple, stupid!

NOAA Airborne Aerosol Observatory



- Based at Champaign, IL
- Cessna T206H
- Routine vertical profiles, 10 levels, 1.5-15kft
- Aerosol optical, chemical, microphysical, and hygroscopic growth measurements
- Trace gas (flask) and ozone (continuous) measurements
- Operates in automated "UAV" mode, no operator on-board
- Flights started in 2006, 2-3 flights per week
- Underfly CALIPSO whenever possible
- Much more information at http://www.esrl.noaa.gov/g md/

aero/net/aao/index.html

NOAA Airborne Aerosol Observatory

Chemical Properties

- Major ions
 - PILS sampler
 - analysis by IC
- Trace elements and total mass (planned)
 - DRUM sampler
 - analysis by PIXE, β-attenuation
- Gases (O₃, carbon-cycle flasks)

Radiative Properties

- Light scattering, backscattering, and absorption 3 wavelengths, no size cut, <40% RH
- Scattering vs. RH

 wavelength,
 μm size cut,
 40%, 65%, 85% RH

Microphysical Properties

- Number concentration D > 10 nm
- Size distribution
 20 < D < 500 nm

http://www.esrl.noaa.gov/gmd/aero/net/aao/index.html